Pestov L. Approximate controllability of the wave equation with mixed boundary conditions / L. Pestov, D. Strelnikov // Укр. мат. вісн. - 2018. - 15, № 2. - С. 251-263. - Бібліогр.: 14 назв. - англ.We consider the initial boundary value problem for acoustic equation in time space cylinder <$EOMEGA~times~(0,~2T)> with unknown variable speed of sound, zero initial data, and mixed boundary conditions. We assume that (Neumann) controls are located at some part <$ESIGMA~times~[0,~T]>, <$ESIGMA~symbol <172>~del OMEGA> of lateral surface of the cylinder <$EOMEGA~times~(0,~T)>. The domain of observation is <$ESIGMA~times~[0,~2T]> and the pressure at another part (<$Edel OMEGA>\<$ESIGMA )~times~[0,~2T])> is assumed to be zero for any control. We prove approximate boundary controllability for functions from subspace <$EV~symbol <172>~H sup 1 ( OMEGA )> which traces have vanished on <$ESIGMA> provided that the observation time is 2T more than two acoustical radii of the domain <$EOMEGA>. We give an explicit procedure for solving Boundary Control Problem (BCP) for smooth harmonic functions from V (i.e. we are looking for a boundary control f which generates a wave u<^>f such that u<^>f (., T) approximates any prescribed harmonic function from V). Moreover using Friedrichs - Poincare inequality we obtain conditional estimate for this BCP. Notice that for solving BCP for these harmonic functions we do not need the knowledge of the speed of sound. Індекс рубрикатора НБУВ: В192.165 + В195.1
Рубрики:
Шифр НБУВ: Ж24749 Пошук видання у каталогах НБУВ
Повний текст Наукова періодика України
 Якщо, ви не знайшли інформацію про автора(ів) публікації, маєте бажання виправити або відобразити більш докладну інформацію про науковців України запрошуємо заповнити "Анкету науковця"
|